Structure électronique de quelques dérivés nitrés insaturés (méthode L.C.A.O. améliorée)

MAURICE BONNET

Laboratoire de Chimie théorique, Faculté des Sciences, Marseille

Recu le 30 Janvier, 1968

Electronic Structure of Some Unsaturated Nitro Compounds

The electronic structure of Nitro-, p- and m-dinitro-, s-trinitro-benzene, nitro-ethylene, mono-, and dinitro-butadien have been calculated by an improved LCAO method.

L'étude d'un certain nombre de dérivés nitrés insaturés, réduits à leur système π : nitrobenzène, para-dinitrobenzène, méta-dinitrobenzène, s-trinitrobenzène, nitroéthylène, mono et di-nitrobutadiène a été faite par la méthode L.C.A.O. améliorée [6] compte tenu des perfectionnements introduits récemment: W_p proportionnel à la charge effective de l'atome [7] et intégrales de coeur tricentriques (A^+,bc) calculées suivant les formules de Cizek-Bénard [3, 1].

En l'absence de données expérimentales relatives à la géométrie, nous nous sommes adressés à la relation proposée par Julg [6] qui lie les distances entre atomes adjacents et les indices de liaison π :

$$d_{rs} = \sqrt{\frac{6.5}{Z_r + Z_s}} (1.523 - 0.190 \ l_{rs}) \, .$$

Par essais successifs, nous avons déterminé les distances interatomiques jusqu'à obtenir la cohérence à 0,001 Å près. De même, nous avons recherché par essais successifs, des charges effectives Z en accord à 0,001 près avec celles déduites du calcul des charges π selon Slater. Tous les angles entre liaisons adjacentes ont été supposés égaux à 120° .

L'ensemble de la méthode avec recyclage complet sur les charges Z et les distances interatomiques a été programmé par nos soins, en collaboration avec M. Bénard (même laboratoire) sur l'ensemble électronique Pallas de la Faculté des Sciences de Marseille.

Résultats

Les résultats obtenus pour les charges π et les distances interatomiques sont rassemblés sur les diagrammes suivants:

Les énergies des transitions électroniques $\pi \to \pi'$ ont été déterminées par interaction de configurations réduite, en nous bornant à des configurations d'énergie inférieure au potentiel d'ionisation de la molécule considérée.

A la précision des calculs, les distances N—O sont toutes égales à $1.23 \,\text{Å}$. La distance entre l'atome d'azote et l'atome de carbone portant le groupement NO_2 est aussi pratiquement constante: $1.38 \,\text{à}\, 1.39 \,\text{Å}$.

362 M. Bonnet:

Fig. 1. Nitrobenzène

Fig. 2. Paradinitrobenzène

Fig. 3. Métadinitrobenzène

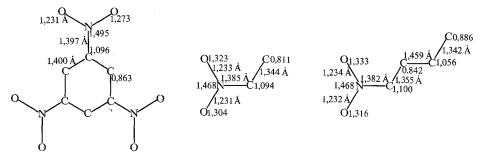


Fig. 4. s-trinitrobenzène

Fig. 5. Nitroéthylène

Fig. 6. Mononitrobutadiène

$$O_{1,232 \text{ Å}} \stackrel{\text{O}}{\underset{1,387 \text{ Å}}{\text{A}}} \stackrel{\text{O}}{\underset{1,347 \text{ Å}}{\text{A}}} \stackrel{\text{O}}{\underset{1,347 \text{ Å}}{\text{A}}} \stackrel{\text{O}}{\underset{1,302}{\text{N}}} \stackrel{\text{O}}{\underset{1,302}{\text{N}}}$$

Fig. 7. Dinitrobutadiène

De même, la charge π de l'oxygène se situe toujours aux environs de 1,3 et celle de l'azote aux environs de 1.5. On notera cependant que cette dernière charge tend à augmenter avec le nombre de groupements NO_2 .

En ce qui concerne les énergies des transitions $\pi \to \pi'$, les seules données expérimentales valables sont relatives aux dérivés aromatiques (tableau).

L'accord avec nos calculs doit être considéré comme bon. Ce qui nous autorise à penser que les valeurs prévues pour les dérivés de l'éthylène et du butadiène sont aussi correctes. A l'appui de ceci, nous citerons le fait que, selon certains auteurs [2], le nitropropène possède une bande d'absorption intense vers 5.4 eV.

On notera que les résultats relatifs au nitrobenzène sont plus satisfaisants que ceux obtenus par Matsuoka et coll. [10] qui déterminent une première transition située selon l'hypothèse faite entre 4.5 et 5.4 eV.

Tableau

	Symétrie	Energie (eV)	Force oscillatrice (c.g.s.)	Résultats expérimentaux		
				Energie (eV)	Intensité	Référence
Nitrobenzène	$^{1}A_{1}$	3.94	0.234	3.84	faible	
	${}^{1}B_{1}$	3.92	0.023			
	${}^{1}B_{1}$	5.34	0.155	4.93	forte	(4)
	${}^{1}A_{1}$	5.34	0.341			()
	${}^{1}B_{1}^{^{1}}$	5.66	0.258	5.83—6,30	trés forte	
	${}^{1}A_{1}$	6.66	0.267	-,		
Paradinitrobenzène	${}^{1}B_{3u}$	3.69	0.225	3.53	faible	(5)
	${}^{1}B_{2u}$	3.73	0.033	4.11	moyenne	
	${}^{1}B_{2}$,	5.18	0.416	4.76	forte	
	${}^{1}B_{3u}^{2u}$	5.32	0.823			
	$^{1}B_{2}$,	5.90	0.550			
	$^{1}A_{a}$	5.47	0			
	${}^{1}B_{1q}$	5.12	0			
	${}^{1}B_{1a}$	5.70	0			
	$^{1}B_{1g}$	6.77	0			
Métadinitrobenzène	$^{1}A_{1}$	3.77	0.034	3.60	faible	
	${}^{1}B_{1}$	3.87	0.006			
	${}^{1}B_{1}$	4.51	0.588	4.30—4,40	moyenne	(9)
	${}^{1}A_{1}$	4.86	0.004			
	${}^{1}B_{1}$	5.25	0.236	5.00	forte	
	${}^{1}A_{1}$	5.57	0.530	5.50	trés forte	
	${}^{1}A_{1}$	5.78	0.476			
	${}^{1}B_{1}$	6.20	0.113			
	${}^{1}B_{1}$	6.46	0.002			
	${}^{1}A_{1}$	6.46	0.003			
	¹ B ₁	6.80	0.307			
s-trinitrobenzène	¹ E'	5.15	0.822	5.50	trés forte	(8.11)
	¹ E'	5.19	0.213			
	$^{1}E'$	5.57	0.386			
	$^{1}E'$	5.69	0.255			
	¹ E'	6.68	0.130			
	¹ E'	6.91	0.075			
	${}^{1}A'_{1}$	4.19	0			
	$^{1}A_{1}^{\prime}$	5.79	0			
	${}^{1}A'_{1}$	6.15	0			
	${}^{1}A'_{2}$	4.22	0			
	${}^{1}A'_{2}$	5.42	0			
	$^{1}A'_{2}$ $^{1}A'_{2}$	6.39 6.46	0			
Nitroéthylène		4.47	0.298			
		5.44	0.298			
Mononitro-		4.04	0.689			
butadiène		5.31	0.531			
		5.42	0.064			
Dinitrobutadiène		4.10	0.918			
		5.50	0.471			

Enfin, l'examen des diagrammes de charges permet d'expliquer le comportement du benzène vis-à-vis de la nitration.

Après fixation d'un groupement NO_2 , tous les atomes de carbone substituables du cycle présentent de légères charges positives, les plus faibles étant en *méta*. Comme la substitution est conditionnée par l'attaque électrophile de l'ion NO_2^+ , c'est en *méta* qu'elle s'effectuera. La charge nette étant positive, la seconde nitration sera plus difficile que la première.

La fixation d'un troisième groupement sur le méta-dinitrobenzène conduira au dérivé s-trinitré. Elle sera encore plus difficile, la charge nette la plus faible étant plus grande encore que dans le nitrobenzène.

Bibliographie

- 1. Benard, M.: C. R. Acad. Sci. Paris 263, 1321 (1966).
- 2. Braude, E. A., E. R. Jones, and C. G. Rose: J. chem. Soc. (London) 1947, 1104.
- 3. Cizek, J.: Molecular Physics 6, 19 (1963).
- 4. D. M. S. U. V. Atlas. Vol. III: d'après E. A. Johnson, Med. Res. Council. Labs. Holly Hill. London.
- 5. d'après H. H. Perkampus, Inst. org. Chem., Abt. Molekülspektroskopie, T. H. Braunschweig.
- 6. Julg, A.: Tetrahedron 19, 25 (1963).
- 7. Theoret. chim. Acta (Berl.) 6, 26 (1966).
- 8. Kamlet, M. J., J. C. Hoffsommer, and H. G. Adolph: J. Am. chem. Soc. 84, 3926 (1962).
- 9. Lang, L.: Absorption spectra in the ultraviolet and visible region, tome IV. Publishing House of the Hungarian Acad. of Sciences. Budapest 1963.
- 10. Matsuoka, O., and Y. I'Haya: Molecular Physics 8, 455 (1964).
- 11. Smirnov, L. V., and A. I. Suprunenko: Optics and spectroscopy 11, 250 (1961).

Dr. Maurice Bonnet Laboratoire de Chimie Théorique Faculté des Sciences, Marseille